Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Onur Șahin, ${ }^{\text {a }}$
Orhan Büyükgüngör, ${ }^{\text {a }}$
Çiǧdem Albayrak ${ }^{\text {b }}$ and Mustafa Odabașoğlu ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Department of Physics, Ondokuz Mayıs University, TR-55139, Samsun, Turkey, and
${ }^{\text {b }}$ Department of Chemistry, Ondokuz Mayıs University, TR-55139, Samsun, Turkey

Correspondence e-mail: onurs@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.054$
$w R$ factor $=0.123$
Data-to-parameter ratio $=8.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(E)-2-Methoxy-6-[(2-trifluoromethylphenylimino)methyl]phenol

The title compound, $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NO}_{2} \mathrm{~F}_{3}$, adopts the phenol-imine tautomeric form. The two aromatic rings are twisted with respect to each other, with a dihedral angle of $17.83(19)^{\circ} . \mathrm{O}-$ $\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{F}$ intramolecular interactions are found in the molecule, and the solid-state structure is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds, to form a two-dimensional network.

Comment

Much work has been devoted to the physicochemical characterization of substituted aromatic Schiff bases, because these compounds show remarkable photochromic properties, mainly in the solid state (Cohen et al., 1964; Hadjoudis et al., 1987). Photochromism arises from intramolecular H-atom transfer, together with a change in the π-electron configuration. The effect of intermolecular interactions, such as $\pi-\pi$ charge transfer or hydrogen bonding, on H -atom transfer processes has been investigated in the solid state (Hadjoudis et al., 1987; Puranik et al., 1992). N-substituted o-hydroxyimines have been reported to display photochromism and thermochromism in the solid state by H -atom transfer from the hydroxy O atom to the N atom (Hadjoudis et al., 1987; Xu et al., 1994).

Numerous trifluoromethyl aromatic compounds have higher melting points, sometimes significantly higher, than the corresponding methyl-substituted compounds. Despite their lower molecular weight, trifluoromethyl compounds generally also have higher boiling points. Apparently, stronger forces exist in the crystalline state between molecules containing a CF_{3} group than in the methyl analogues. These forces do not extend to the liquid state (Boitsov et al., 2002).
o-Hydroxyarylidene Schiff bases demonstrate two possible tautomeric forms, keto-amine and phenol-imine. In the solid state, the keto-amine tautomer has been established in naphthaldimine compounds (Hökelek et al., 2000; Ünver et al., 2002) while the phenol-imine tautomer is found in salicylaldimine Schiff bases (Dey et al., 2001; Yang \& Vittal, 2003; Karadayı et al., 2003). Against this background, we present here the crystal structure of the title compound, (I).

(I)

Our investigations show that compound (I) adopts the phenol-imine tautomeric form. An ORTEP3 (Farrugia, 1997)

Received 24 March 2005
Accepted 4 April 2005
Online 9 April 2005

Figure 1
A view of the molecule of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.

Figure 2
A packing diagram for (I). Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity.
view of the molecule of (I) and a packing diagram are shown in Figs. 1 and 2, respectively. The $\mathrm{C} 8-\mathrm{N} 1$ and $\mathrm{C} 7-\mathrm{C} 6$ bond lengths are 1.418 (5) and 1.454 (5) Å, respectively (Table 1), and agree with the corresponding distances in 2-[(4-hydroxyphenyl)iminomethyl]thiophene $[1.422$ (2) and 1.447 (3) \AA, respectively; Kazak et al., 2000], trans-4-[(4-dimethylamino-phenyl)iminomethyl]- N -methylpyridinium para-toluenesulfonate [1.413 (3) and $1.461 \AA$, respectively; Coe et al., 2001], N-[3,5-bis(trifluoromethyl)phenyl]salicylaldimine $\quad[1.417$ (4) and 1.439 (4) Å, respectively; Karadayı et al., 2003] and N-[3,5-bis(trifluoromethyl)phenyl]-3-methoxysalicylaldimine [1.412 (4) and 1.442 (4) Å, respectively; Karadayı et al., 2003]. The N1=C7 bond length of 1.270 (5) \AA is typical of a double bond, similar to the corresponding bond lengths in $N-(2,4-$ dinitrophenyl)- N-methylhydrazone [1.279 (2) Aْ; Aygün et al., 1998], 2-salicylideneamino-4,5,6,7-tetrahydrobenzo[b]thio-phene-3-carbonitrile [1.281 (2) Å; Elerman \& Elmal1, 1998] and $\quad N$-[3,5-bis(trifluoromethyl)phenyl]salicylaldimine [1.276 (4) Å; Karadayı et al., 2003]. The O1-C5 and O2-C4 bond lengths are 1.346 (4) and 1.367 (4) \AA, respectively, and agree with the corresponding distances in $2-\{[$ tris(hydroxy-methyl)methyl]aminomethylene\}cyclohexa-3,5-dien-1(2H)one and its 6-hydroxy and 6-methoxy derivatives [1.3025 (16) and 1.3684 (19) Å, respectively; Odabaşoğlu et al., 2003]. The $\mathrm{O} 2-\mathrm{C} 4$ and $\mathrm{O} 2-\mathrm{C} 15$ bond lengths are 1.367 (4) and 1.424 (5) A, respectively, and these are similar to the corresponding distances in (E)-2-hydroxy-3, $3^{\prime}, 4^{\prime}$-trimethoxy-
stilbene [1.371 (2) and 1.427 (3) A, respectively; Stomberg et al., 1998]. The dihedral angle between the C1-C6 and C8-C13 benzene rings is $17.83(19)^{\circ}$.

Compound (I) forms two strong intramolecular hydrogen bonds [O $\cdots \mathrm{N} 2.625$ (4) \AA and $\mathrm{O} \cdots \mathrm{F} 3.199$ (4) \AA; Table 2], with $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1$ and $\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5-\mathrm{O} 1$ torsion angles of $-0.6(5)^{\circ}$ and $0.8(6)^{\circ}$, respectively (Table 1). There are also intermolecular $\mathrm{C} \cdots \mathrm{F}$ and $\mathrm{C} \cdots \mathrm{O}$ hydrogen bonds present, producing a two-dimensional network (Fig. 2, Table 2).

Experimental

The title compound, (I), was prepared by refluxing a solution prepared from o-vanillin ($0.5 \mathrm{~g}, 3.286 \mathrm{mmol}$) in ethanol $(10 \mathrm{ml})$ and 2-(trifloromethyl)aniline $(0.529 \mathrm{~g}, 3.286 \mathrm{mmol})$ in ethanol (10 ml). The reaction mixture was stirred for 1 h under reflux and left to cool. The product, (I), was recrystallized from methanol (yield 73%; m.p. 390-392 K).

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}_{2}$
$M_{r}=295.26$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=5.2070$ (5) £
$b=14.0918$ (18) \AA
$c=18.1737(18) \AA$
$V=1333.5(3) \AA^{3}$
$Z=4$
$D_{x}=1.471 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation

Cell parameters from 3996 reflections
$\theta=1.8-25.5^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, orange
$0.50 \times 0.29 \times 0.18 \mathrm{~mm}$

Data collection

Stoe IPDS 2 diffractometer φ scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.954, T_{\text {max }}=0.979$
8826 measured reflections
1562 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.123$
$S=0.89$
1562 reflections
196 parameters
H atoms treated by a mixture of independent and constrained refinement

931 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.142$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-6 \rightarrow 6$
$k=-17 \rightarrow 16$
$l=-22 \rightarrow 22$

Table 1

Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{C} 6$	$1.413(5)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.454(5)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.370(5)$	$\mathrm{C} 7-\mathrm{N} 1$	$1.270(5)$
$\mathrm{C} 4-\mathrm{O} 2$	$1.367(4)$	$\mathrm{C} 8-\mathrm{C} 13$	$1.414(5)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.409(5)$	$\mathrm{C} 8-\mathrm{N} 1$	$1.418(5)$
$\mathrm{C} 5-\mathrm{O} 1$	$1.346(4)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.392(6)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.378(5)$	$\mathrm{C} 15-\mathrm{O} 2$	$1.424(5)$
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 5$	$114.9(3)$	$\mathrm{C} 13-\mathrm{C} 8-\mathrm{N} 1$	$116.7(3)$
$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 6$	$123.1(4)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$119.9(4)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$121.6(4)$	$\mathrm{C} 8-\mathrm{C} 13-\mathrm{C} 14$	$121.2(4)$
C1-C6-C7	$118.4(3)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$120.5(3)$
N1-C7-C6	$122.0(3)$	$\mathrm{C} 4-\mathrm{O} 2-\mathrm{C} 15$	$116.9(3)$
C9-C8-N1	$124.5(4)$		
$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$0.8(6)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1$	$-0.6(5)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{~N} 1$	1.00 (5)	1.69 (5)	2.625 (4)	154 (4)
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{~F} 2$	1.00 (5)	2.57 (5)	3.199 (4)	121 (3)
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{~F}^{\text {i }}$	0.93	2.79	3.650 (5)	154
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{~F} 1^{\text {i }}$	0.93	2.77	3.443 (4)	130
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 2^{\text {ii }}$	0.93	2.47	3.342 (5)	157
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{~F} 3^{\text {iii }}$	0.93	2.90	3.751 (5)	153
$\mathrm{C} 15-\mathrm{H} 15 B \cdots \mathrm{O} 1^{\text {iv }}$	0.96	2.88	3.724 (6)	148
Symmetry codes: $x-\frac{1}{2},-y+\frac{3}{2},-z \text {; (iv) }$	$\begin{aligned} & -x+2, \\ & y, z . \end{aligned}$	$z+\frac{1}{2}$	$-x+1, y$	$+\frac{1}{2} ; \quad$ (iii)

The absolute configuration was not determined from the X-ray data, as no strong anomalous scatterer is present; 1069 Friedel pairs were merged before the final refinement. Atom $\mathrm{H} 1 A$ bound to O 1 was refined freely. All H atoms bound to C atoms were refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic C, and C-H $=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl C atoms.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant No. F279 from the University Research Fund).

References

Aygün, M., Işık, Ş., Öcal, N., Nawaz, T. M., Kaban, Ş. \& Büyükgüngör, O. (1998). Acta Cryst. C54, 527-529.

Boitsov, S., Songstad, J. \& Törnroos, K. W. (2002). Acta Cryst. C58, o145-o147.
Coe, B. J., Harris, J. A., Coles, S. J. \& Hursthouse, M. B. (2001). Acta Cryst. C57, 857-857.
Cohen, M. D., Schmidt, G. M. J. \& Flavian, S. (1964). J. Chem. Soc. pp. 20412051.

Dey, D. K., Dey, S. P., Elmalı, A. \& Elerman, Y. (2001). J. Mol. Struct. 562, 177184.

Elerman, Y. \& Elmal, A. (1998). Acta Cryst. C54, 529-531.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hadjoudis, E., Vittorakis, M. \& Mavridis, I. M. (1987). Tetrahedron, 43, 13451360.

Hökelek, T., Kılı̧, Z., Işıklan, M. \& Toy, M. (2000). J. Mol. Struct. 523, 61-69.
Karadayı, N., Gözüyeşil, S., Güzel, B. \& Büyükgüngör, O. (2003). Acta Cryst. E59, o161-o163.
Kazak, C., Aygün, M., Turgut, G., Odabaşoǧlu, M., Özbey, S. \& Büyükgüngör, O. (2000). Acta Cryst. C56, 1044-1045.

Odabaşoğlu, M., Albayrak, Ç., Büyükgüngör, O. \& Lönnecke, P. (2003). Acta Cryst. C59, o616-o619.
Puranik, V. G., Tavale, S. S., Kumbhar, A. S., Yerande, R. G., Padhye, S. B. \& Butcher, R. J. (1992). J. Cryst. Spectrosc. Res. 22, 725-731.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - A REA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Stomberg, R., Li, S., Lundquist, K. \& Albinson, B. (1998). Acta Cryst. C54, 1929-1934.
Ünver, H., Kabak, M., Zengin, D. M. \& Durlu, T. N. (2002). J. Chem. Cryst. 31, 203-209.
Xu, X.-X., You, X.-Z., Sun, Z.-F., Wang, X. \& Liu, H.-X. (1994). Acta Cryst. C50, 1169-1171.
Yang, C.-T. \& Vittal, J. (2003). Inorg. Chim. Acta, 344, 65-76.

